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Kinetics of growth process controlled by convective fluctuations
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A model of the spherical~compact! growth process controlled by a fluctuating local convective velocity field
of the fluid particles is introduced. It is assumed that the particle velocity fluctuations are purely noisy,
Gaussian, of zero mean, and of various correlations: Dirac delta, exponential, and algebraic~power law!. It is
shown that for a large class of the velocity fluctuations, the long-time asymptotics of the growth kinetics is
universal~i.e., it does not depend on the details of the statistics of fluctuations! and displays the power-law time
dependence with the classical exponent 1/2 resembling the diffusion limited growth. For very slow decay of
algebraic correlations of fluctuations asymptotically liket2g, gP(0,1#), kinetics is anomalous and depends
strongly on the exponentg. For the averaged radius of the crystal^R(t)&;t12g/2 for 0,g,1 or ^R(t)&
;(t ln t)1/2 for g51.
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I. INTRODUCTION

Growth processes occur at various levels of nature: fr
microscopic to macroscopic worlds, from inorganic to o
ganic worlds, from inanimate to animated worlds, fro
physical through biological up to social worlds@1–3#. They
have been studied both experimentally and theoretically
physics, examples are aggregation processes, growth of
ters and crystals, grain growth, and the like. These are mo
irreversible processes in which objects are built up from
ementary ingredients such as particles, molecules, or mi
aggregates. Growth from the vapor phase, from solution
from melt is the most widespread method of crystal growi
Commonly used solvents are water, multicomponent aque
or nonaqueous solutions, melts of some chemical com
nents, colloidal suspensions, complex electrolytes, etc. T
aspects of the growth process have been intensively stud
a geometric structure of crystals~aggregates, clusters! and
their growth kinetics. The former is related to the grow
patterns~compact crystals, dendrites!, the question of a~frac-
tal or nonfractal! dimension and scaling properties of aggr
gates. The latter concerns the evolution of the interface
namics, the velocity of the interface and its asymptotics
long times, the time increase of the crystal radius, existe
of regimes with power-law growth behavior, and evaluati
of the growth exponents. One can classify the growth p
cess with respect to the growing object-surroundings inte
tion or properties of the solution: the particle-cluster
cluster-cluster aggregation, the reaction or diffusion limit
growth, the kinetic or ballistic aggregation, the growth
external fields, under diffusive and/or convective flow, in d
terministic or stochastic fields.

In most papers on the crystal growth, it is assumed t
the crystal formation and mass transfer from surrounding
the crystal is achieved by an ordinary diffusive flow, i.e.,
the particle self-diffusivity or by the particle gradient diffu
sivity ~the so-called diffusion limited growth! @4,5#. How-
ever, the mass transfer can be maintained by natura
1063-651X/2002/65~5!/051401~9!/$20.00 65 0514
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forced convection~the temperature difference method, th
concentration-induced convection!. Nevertheless, the purel
convection limited growth has been rarely considered. Le
remark that even in the absence of natural convection in
liquid phase or in the melt, in some cases the local conv
tive flow can appear because the change of density du
the phase transition causes a flow in the liquid or in the m
towards the interface. In some practical applications
growth process may take place under conditions of an ex
nally applied velocity field, which can be induced by th
production of the liquid phase@6#. Therefore it is sensible to
study the influence of convective flow on the growth proce
see, e.g., Ref.@7#. In Ref. @8#, the convective field consists o
two parts: deterministic and random. The random part
been assumed to be Gaussian white noise and then the
lution equation of the solid-liquid interface is a Langevi
type equation. In that case, the kinetics is determined ma
by the deterministic convective flow. Here, we assume t
the deterministic part is absent and only the fluctuating p
occurs. Locally, it looks like a diffusion process of th
Brownian particle. If fluctuations are modeled by Gauss
white noise then the long-time kinetics is the same as in
classical theory of the diffusion driven growth for which th
evolution of crystal sizes is proportional to the square roo
time. However, our approach gives an advantage over a s
dard approach: it allows to model the growth process driv
not only by Markovian diffusion~the Wiener process! but
also to include a wide class of non-Markovian diffusion pr
cesses. In the standard description, which couples the d
sion equations in the bulk phases with the interfacial bou
ary conditions, it is rather difficult to include non-Markovia
diffusion processes, which are described by much more c
plicated evolution equations~e.g., integrodifferential equa
tions! than the classical parabolic diffusion equation with
constant~state independent! diffusion coefficient.

In any modeling, the complexity of the process is usua
reduced by supposing elementary processes to be dom
mechanisms responsible for geometry and kinetics
©2002 The American Physical Society01-1
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growth. Our approach is based on the mass conservation
from which a fundamental evolution equation is deriv
elsewhere@9,10#. This equation describes time evolution
the surface of the crystal and can be reduced to an extrem
simple form for growing objects withsphericalor perturbed
spherical symmetry such as spherulites@11,12#, droplike ag-
gregates in ferrocolloids@13#, or protein crystals@14#. The
compact spherical growth~neglecting the possibilities o
faceting or dendritic growth! has been studied from variou
points of view~see, e.g., Refs.@5,15,16#!.

The rest of the paper is organized as follows. In the f
lowing section, we rederive an evolution equation for t
solid-liquid interface. In Sec. III we present details of o
model. As in Refs.@8,17#, we consider the growth proces
driven by a convective velocity field@18#. In Sec. IV, we
solve the corresponding master~Fokker-Planck! equation. In
Sec. V, we present general results on asymptotic behavio
statistical moments of the radius of the growing aggregate
Sec. VI, we describe several models of fluctuations. In S
VII, we analyze kinetics of the growth process and summ
rize the paper.

II. EVOLUTION EQUATION OF INTERFACE

Consider one of the simplest models of growth of t
crystal as a process of attachment of particles from isotro
medium that usually is liquid or gas. After the nucleati
stage, a small crystal is formed. Particles of the surround
perform a walk and when they arrive in contact with t
crystal, they stick permanently. Then other particles arr
and stick to the crystal, and so on. An equation describ
time-evolution of a growing object can be obtained using
mass conservation law for the crystal plus surroundings.
tails are presented in Refs.@9,10#. Here, we rederive tha
equation. Let the medium be a saturated solution which
two component. The first component is a solvent and
second component consists of particles that will form
crystal. Denote the concentration of the second compone
the solution byc( r̄ ) ~in units of m23) and the density of the
crystal that consists of particles of the second componen
C( r̄ ) @expressed in the same units asc( r̄ )#. Let us analyze
the mass conservation law~cf. Fig. 1!. At time t the crystal
has a volumeV(t) and at the timet1.t it has a volume
V(t1).V(t). The mass contained inV(t1) at t1 is

m~ t1!5E E E
V(t1)

C~ r̄ !dV. ~1!

The mass contained in the volumeV(t1) but at earlier timet
consists of the crystal mass inV(t) and the mass of particle
of the second component of solution in the volumeV(t1)
2V(t), i.e.,

m~ t !5E E E
V(t)

C~ r̄ !dV1 E E E
V(t1)2V(t)

c~ r̄ !dV. ~2!

The rate of change of the mass in the volumeV(t1),
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m~ t1!2m~ t !

t12t
5

1

t12t E E E
V(t1)2V(t)

@C~ r̄ !2c~ r̄ !#dV ~3!

equals the net mass flux across the interfaceS(t1),

m~ t1!2m~ t !

t12t
5E E

S(t1)

j•dS, ~4!

where• denotes the scalar product and

j5 j „c~ r̄ !… ~5!

is the flux of particles whose dependence on the fluid c
centrationc( r̄ ) follows from physics of the problem~ex-
amples will be given below! anddS is an inward normal to
the surfaceS(t1). In the limit t1→t, we get

d

dtE E E
V(t)

@C~ r̄ !2c~ r̄ !#dV5E E
S(t)

j „c~ r̄ !…•dS. ~6!

This equation expresses the mass conservation law for g
ing objects. If the growing object has a~ideal or perturbed!

FIG. 1. The growing crystal of the densityC( r̄ ) immersed in the

concentration fieldc( r̄ ). The solid-liquid interfacesS(t) andS(t1)
at two instantst and t1.t of the growth process.
1-2
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symmetry, then Eq.~6! can be converted into a simpler an
more tractable equation. In the spherical coordinate sys
Eq. ~6! takes the form

E
0

p

dqE
0

2p

df
d

dtE0

r̃
dr r 2 sinq@C~r ,q,f!2c~r ,q,f!#

5E
0

p

dqE
0

2p

df j „c~ r̃ ,q,f!…•n, ~7!

where the function

r̃[ r̃ ~q,f;t ! ~8!

specifies the interfaceS(t) andn is the inward normal@19#
to the surface. For example, for a sphere of radiusR(t), one
obtainsr̃ (q,f;t)5R(t). From Eq.~7! it follows that

r̃ 2sinq@C~ r̃ ,q,f!2c~ r̃ ,q,f!#
dr̃

dt
5 j „c~ r̃ ,q,f!…•n.

~9!

One has to determine the following three functions.
~a! The densityC( r̃ ,q,f) of the growing crystal on the

surfaceS(t).
~b! The concentrationc( r̄ ) of the saturated solution ove

the interfaceS(t). It is determined from thermodynamica
conditions and geometry ofS(t).

~c! The dependence of the fluxj on the concentrationc( r̄ )
of the fluid.

Let us consider point~a!. In the most cases one can a
sume that the crystal is homogeneous and the density is
form,

C~ r̃ ,q,f!5C5const. ~10!

As for point ~b!, the expression forc( r̃ ,q,f) has been de-
rived under an assumption of local thermodynamical equi
rium near the interfaceS(t). The concentration of solution
over a crystal depends on the surface curvature due to
Gibbs-Thomson effect and is given by the formula@1,20#

c~ r̃ ,q,f!5c0@11G~q,f!K~ r̃ ,q,f!#, ~11!

where G(q,f) is the capillary coefficient,K( r̃ ,q,f) is
twice the mean curvature of the surfaceS(t) at the point
( r̃ ,q,f), andc0 is the concentration of the saturated soluti
over the flat surface~the equilibrium concentration for th
planar interface!, i.e., when the curvature of the interface
zero.

In turn, let us consider point~c!. If the feeding of the
growing object is purely convective then@18#

j „c~ r̄ !…5c~ r̄ !v~ r̄ !, ~12!

wherev( r̄ ) is a velocity of convective particles.
For a purely parabolic diffusion field@18#

j „c~ r̄ !…52D grad c~ r̄ !, ~13!
05140
m

ni-

-

he

where D is the diffusion coefficient @in general, D

5D(c, r̄ ,t)#.
For a generalized diffusion case and in the high-fricti

limit j „c( r̄ )… takes the form@21#

j „c~ r̄ !…5
1

k
c~ r̄ !F~ r̄ !2D gradc~ r̄ !, ~14!

whereF( r̄ ) is a force acting on particles of the fluid andk
stands for a friction coefficient.

For the so-called hyperbolic diffusion~described by the
telegrapher’s equation! @22# the flux is determined by the
equation

tH

] j

]t
1 j52D gradc~ r̄ !, ~15!

wheretH is the correlation time of the hyperbolic rando
walk. One can combine convective and diffusive fields
postulate other mechanisms for flow of the concentrat
fields outside the growing crystal, as, e.g., the nonlocality
the flux @cf. Eqs.~3! and ~5! in Ref. @23##.

Equation~9! is our fundamental equation that describ
time evolution of the interfaceS(t) represented by the func
tion r̃ (q,f;t). In some cases, it reduces to or can be
proximated by a~partial or ordinary! differential equation
@8–10#.

III. DESCRIPTION OF MODEL

From the mass conservation law, we obtained Eq.~9!,
which governs the long-time dynamics of the growth pr
cess. The mass transfer from the solution to the crysta
driven by the flux in the immediate vicinity of the interfac
The theoretical models of the crystal growth have mos
considered the parabolic diffusive flux~13! and the mass
conservation law has been expressed as a diffusion equ
for the fluid particles. We propose an alternative descript
based only on the convective flux~12! instead of the diffu-
sive flux ~13!. In the coexistence region, the crystal grow
produces a depletion region in the vicinity of the solid-flu
interface changing the particle density. It causes a local fl
of particles in the solution toward the interface. Cons
quently, even in the absence of the forced or natural conv
tion in the fluid phase, the local flow velocity field occu
@7#. The effects of the local fluid convection is the object
this research. We make several simplifications assuming
spherical symmetry.

~i! The crystal is a sphere of radiusR5R(t).0. Then the
function r̄ (q,f;t)5R(t).

~ii ! The convective field~12! is radial,

j „c~ r̃ ,q,f!…52c~R!v~R,t !er , ~16!

wherev(R,t) is the velocity of convective particles over th
surfaceR(t).

~iii ! The Gibbs-Thomson relation~11! takes the form
1-3
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c~ r̃ ,q,f!5c~R!5c0F11
2G

R G . ~17!

Under these assumptions, Eq.~9! takes the form

dR

dt
5A~R!v~R,t !, ~18!

where

A~R!5a
R12G

R2R*
, R.R* , ~19!

and

a5
c0

C2c0
, R* 52Ga. ~20!

The quantitya plays the role of the reciprocal of the ‘‘satu
ration’’ parameter andR* is the critical radius of the aggre
gate nucleus. WhenR.R* the aggregate grows. Otherwis
it recedes.

In the previous papers@8,17#, we considered the case o
the convective velocity fieldv(R,t) composed of two parts
deterministic~induced by, e.g., the external force! and ran-
dom~describing the local fluctuating flow!. In a general case
the velocity field can fluctuate in space and in time. Here,
consider the velocity fluctuations of the fluid particles, whi
do not depend on the position in the space but only on ti
In other way, the velocity field is purely noisy, i.e.,

v~R,t !5V~ t !, ~21!

whereV(t) stands for a stationary Gaussian~generally cor-
related! stochastic process with the first two moments

^V~ t !&50, ^V~ t !V~s!&5K~ ut2su!, ~22!

whereK(t) is a correlation function of the velocity fluctua
tions of the fluid particles. It implies that the determinis
part of the velocity field is zero andV(t) describes fluctua-
tions of the zero-mean convective field. In the approach p
posed, the diffusive flux in the classical form~13! does not
appear. Nevertheless, the mass transfer from the fluid to
crystal is not purely convective but implicitly it is diffusiv
because diffusion is induced by velocity fluctuations of t
fluid particles in the vicinity of the interface. Notice that th
fluid particles of the interface region will stick to the cryst
if their velocity ~and in consequence energy and momentu!
is sufficiently large in order to overcome the potential barr
of the interface. In this picture, it can be achieved by flu
tuations of the particle velocity.

IV. SOLUTION OF MASTER EQUATION

Equation~18! in the form

dR

dt
5A~R!V~ t !, ~23!
05140
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whereV(t) is a random function, is a Langevin-type equ
tion with multiplicative noise. From the mathematical poi
of view, the functionR(t) represents a nonstationary st
chastic process, which for correlated noiseV(t) is non-
Markovian. LetP(R,t) be a probability density that at timet
the crystal has a radiusR. ThenP(R,t) obeys the following
master equation

]

]t
P~R,t !52

]

]R
J~R,t !, ~24!

where the probability currentJ(R,t) is

J~R,t !52D~ t !A~R!
]

]R
A~R!P~R,t ! ~25!

and the diffusion function

D~ t !5E
0

t

K~s!ds. ~26!

To prove above, let us exploit the transformR→x, where

x5ER dr

A~r !
. ~27!

Then from Eq.~23! one obtains an additive noise equatio
for the stochastic processx(t), namely,

dx

dt
5V~ t !. ~28!

It is a particular case of the equation~3.28! in Ref. @24#, for
which the master equation for the probability densityp(x,t)
of the transformed processx(t) is derived@see the Eq.~3.30!
in Ref. @24##. Having the master equation forp(x,t), one can
obtain the master equation~24! remembering that
p„x(R),t…5A(R)P(R,t).

The master equation~24! has the same form as a forwar
Kolmogorov ~Fokker-Planck! equation for the conditiona
probability density of the Markovian diffusion process. How
ever, in general the processR(t) is not Markovian. To solve
this equation, we have to specify the initial and bounda
conditions. We assume that at the initial momentt50, the
crystal is a sphere of radiusR0. It means that the initial
condition is

P~R,0!5d~R2R0! ~29!

and the phase space isRP@R0 ,`). The left boundary con-
dition is the reflecting one,

J~R0 ,t !50. ~30!

The solution of the problem~24! with Eqs. ~29! and ~30!,
which is normalized on@R0 ,`), reads

P~R,t !5
1

A~R!

1

Apt~ t !
expF2

@x~R!2x~R0!#2

4t~ t ! G , ~31!
1-4
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where

x~R!5
1

a
@R2~R* 12G!ln~R12G!# ~32!

and

t~ t !5E
0

t

D~s!ds. ~33!

The functiont(t) is a rescaled time for the growth proces

V. LONG-TIME ASYMPTOTICS

The probability distribution~31! enables to determine th
most probable valueRm(t) of the radius of the growing crys
tal. It corresponds to the maximum of the probability dens
P(R,t) and is determined by the equation

FRm~ t !2R02~R* 12G!ln
Rm~ t !12G

R012G G
3@Rm~ t !2R* #252a2~R* 12G!t~ t !. ~34!

For long time,t@1, the most probable radius evolves as

Rm~ t !;t1/3~ t !. ~35!

The next characteristics of the growing process are statis
moments defined by

^Rn~ t !&5E
R0

`

RnP~R,t !dR ~36!

for integersn51,2,3, . . . . Now, weprove that in the long-
time limit, the statistical moments behave as

^Rn~ t !&;tn/2~ t !. ~37!

Proof. Denote the integrand in Eq.~36! by

f n~R,t!5
Rn

A~R!Apt
expF2

@x~R!2x~R0!#2

4t G . ~38!

First, let us observe that

lim
R→`

x~R!2x~R0!

R2R0
5

1

a
~39!

and

lim
R→`

Rn

A~R!~R2R0!n
5

1

a
. ~40!

So, it implies that the functionf n(R,t) is bounded. More
precisely, for anye.0 there is anRe.0 such that the in-
equalities
05140
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a1e
gn„t~a2e!2,R2R0…< f n~R,t!

<
a1e

a2e
gn„t~a1e!2,R2R0…

~41!

hold for R>Re , where

gn~a,y!5
yn

Apa
expF2

y2

4aG . ~42!

Since

f n~R,t!<
Re

n

A0Apt
, ~43!

whereA05minA(R).0, then f n(R,t)→0 uniformly on the
interval @0,Re# whent→`. Hence, one concludes that

lim
t→`

E
R0

Re
t2n/2f n~R,t!dR50 ~44!

and similarly

lim
t→`

E
R0

Re
t2n/2gn„t~a6e!2,R2R0…dR50. ~45!

Let us denote

E
0

`

gn~a,y!dy5an/2I n , ~46!

where the constantsI n are defined by the integral

I n5
1

Ap
E

0

`

xn expF2
x2

4 Gdx. ~47!

From Eqs.~41!, ~44!, and~45! it follows that

a2e

a1e
~a2e!nI n< lim

t→`

infE
R0

`

t2n/2f n~R,t!dR

< lim
t→`

supE
R0

`

t2n/2f n~R,t!dR

<
a1e

a2e
~a1e!nI n . ~48!

Sincee is an arbitrary positive number, one can takee small
enough and then

lim
t→`

t2n/2E
R0

`

f n~R,t!dR5anI n . ~49!

In consequence, one obtains for long times the follow
asymptotics:
1-5
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^Rn~ t !&.anI ntn/2~ t !, ~50!

which gives Eq.~37! and this completes the proof. j
The most important is the first moment, i.e., the avera

radius of the crystal. From the relation~50! it follows that

^R~ t !&.
2a

Ap
t1/2~ t !. ~51!

The explicit form of time evolution of̂R(t)& depends on the
correlations of the velocity fluctuations of the fluid particle
It is worth to mention that the most probable radiusRm(t)
and the mean radiuŝR(t)& of the crystal display differen
asymptotics~35! and ~51!, respectively.

VI. MODELS OF FLUCTUATIONS

In order to study the influence of statistics of fluctuatio
on kinetics of the growth process of crystals, one has
specify Gaussian fluctuationsV(t), i.e., their correlation
function K(t). Below, we present several models of su
fluctuations. The nature and origin of fluctuations of a s
cific correlation function is related to interactions of the flu
particles. The simplest model assumes that fluctuations
uncorrelated~the correlation time is zero! but this idealiza-
tion is never exactly realized and in many cases can be
sufficient. Therefore one should consider velocity fluctu
tions of the nonzero correlation time@24,25#.

A. White noise

The first example of fluctuations is white noise for whi
the correlation function takes the form

K1~ t !52D0d~ t !, ~52!

whereD0.0 is constant andd(t) is the Dirac delta function.
This case corresponds to the noncorrelated velocity fluc
tions of the fluid particles. The diffusion function~26! has
the form

D1~ t !5D0 ~53!

and the function~33! is given by the relation

t1~ t !5D0t. ~54!

This case has been studied in Ref.@8#.

B. Ornstein-Uhlenbeck process

The second example is the Ornstein-Uhlenbeck stocha
process, which is exponentially correlated@24#. Its correla-
tion function has the form

K2~ t !5
D0

tc
expS 2

t

tc
D , ~55!

wheretc is the correlation time of the velocity fluctuation
The corresponding diffusion function is given by
05140
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D2~ t !5D0F12expS 2
t

tc
D G ~56!

and in this case the function~33! reads

t2~ t !5D0F t2tc1tc expS 2
t

tc
D G . ~57!

C. 1Õt2 correlations

The third model defines special algebraically correla
fluctuations@25# for which

K3~ t !5
D0

p

tc

tc
21t2

~58!

with the exponent 2. Asymptotically, fort@tc , fluctuations
exhibit the long-time tailt22. For this model

D3~ t !5
D0

p
arctanS t

tc
D ~59!

and

t3~ t !5
D0

p F t arctanS t

tc
D2

1

2
tc lnS 11

t2

tc
2D G . ~60!

D. Power-law correlations

The last example also concerns the algebraically co
lated stochastic process@25#, namely,

K4~ t !5K0S 11
t

tc
D 2g

, ~61!

whereK0.0 is constant and the exponentg.0. However,
this process is more general than Eq.~58!. We have to dis-
tinguish several cases.

1. The casegÄ1

If g51 then the diffusion functionD(t) increases loga-
rithmically in time,

D4~ t !5Atc lnS 11
t

tc
D . ~62!

The function~33! is

t4~ t !5Atc
2F S 11

t

tc
D lnS 11

t

tc
D2

t

tc
G . ~63!

2. The casegÅ1

If the exponentgÞ1 then

D4~ t !5
Atc

12g F S 11
t

tc
D 12g

21G . ~64!
1-6
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The form of the function~33! depends ong. For gÞ2, it
reads

t4~ t !5
Atc

2

~12g!~22g! F S 11
t

tc
D 22g

2~22g!
t

tc
21G ,

~65!

while for g52, it is given by

t4~ t !5Atc
2F t

tc
2 lnS 11

t

tc
D G . ~66!

VII. KINETICS OF GROWTH PROCESS

Dependence of the growth rate upon the growth mec
nism is the most important characteristic of the growth p
cess. For the model considered, the growth mechanism
pends on the velocity fluctuations, i.e., on the form of th
correlation function. The correlation functionsK2(t) and
K3(t) have been normalized in such a way that when
correlation timetc tends to zero then

Ki~ t !→2D0d~ t ! ~67!

for i 52,3 and these two processes tend to Gaussian w
noise. Moreover, let us notice that for long time, whent
@tc , the functionst i(t);t, i 52,3 ~as for normal diffu-
sion!. For the exponentg.1, the correlation functionK4(t)
exhibits the same features when we redefine the coeffic
K0, namely,

K05D0

g21

2tc
. ~68!

Indeed, if tc→0 then K4(t)→2D0d(t) and t4(t);t for
large times.

For these cases, in the long-time limit, the statistical m
ments display the power-law dependence,

^Rn~ t !&;tn/2 ~69!

with the exponentn/2 for the correspondingnth moment. In
particular, the rate of growth is determined by evolution
the averaged radius of the crystal, which behaves as

^R~ t !&;t1/2. ~70!

A feature such as the one presented in Eq.~70! is character-
istic and generic for the diffusion limited growth. Here, w
have not taken into account the Fick diffusive flux~13! of
particles of surroundings. Instead, we consider a convec
flux without a deterministic part and only with the fluctuatin
field. However, fluctuations indirectly induce diffusion
Therefore it is comprehensible that the relation~70! can be
satisfied. Unfortunately, this argumentation can be incorr
Indeed, let us consider the case of long-time~very slow de-
cay of! correlations of fluctuations. For algebraic fluctu
tions, it is the case when the exponentgP(0,1#. In the limit
of large time, the averaged radius increases faster than
the diffusion limited growth, namely,
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for

^R~ t !&;t12g/2 for 0,g,1 ~71!

and

^R~ t !&;~ t ln t !1/2 for g51. ~72!

It means that the crystal grows faster. In consequence, lo
time correlations induce anomalous kinetics. There the qu
tion appears: which feature of the velocity fluctuations
responsible for diffusivelike or anomalous kinetics. Fro
above it is clearly seen that for all presented models, fluct
tions that in the proper scaling tend to Gaussian white no
induce diffusivelike kinetics and those that do not tend
white noise lead to anomalous kinetics. Put differently,
power spectrumS(v) of the former takes a finite value fo
all frequenciesv and, on the contrary, for the latterS(v)
→` whenv→0. The conjecture is that the mechanism r
sponsible for anomalous kinetics is concealed in the lo
frequency properties of the power spectrum of driving flu
tuations: if for sufficiently low frequency the powe
spectrum can be arbitrary large then the growth kinetics
anomalous.

Now, let us present the details of the kinetics. Time ev
lution of the probability density~31! is similar for all models
of fluctuations: it starts from the sharp Dirac-delta distrib
tion, spreads out monotonically, its maximumRm(t) moves
to larger values ofR according to Eq.~34! and finally
P(R,t)→0 ast→`. The influence of various correlations o
fluctuations on the probability density is visualized in Fig.
At a fixed instantt5const, P(R,t) is sharper for algebraic
fluctuations in comparison with the remaining fluctuation
Although asymptotically the correlation functionsK3(t) and

FIG. 2. Some selected examples of the probability distribut
P(R,t51) of the growth process controlled by convective fluctu
tions of various correlations:~a! algebraic K3(t), ~b! algebraic
K4(t) with g52, ~c! algebraicK4(t) with g53, ~d! exponential
K2(t), and ~e! Dirac-deltaK1(t). Values of the remaining param
eters areD05a5R05tc51 andR* 50.1.
1-7
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K4(t) with g52 behave in the same way ast22, the early
stages of evolution are a little bit different.

In Fig. 3 we show how the growth kinetics is sensitive
variation of the correlation timetc of the Ornstein-
Uhlenbeck fluctuations with a fixed integrated intensityD0.
Such a scaling describes for small correlation timetc a de-
viation from white noise. As the correlation time increas
the variance ^V2(t)&5K(0)5D0 /tc of fluctuations de-
creases and the growth is slower. In the adiabatic limittc
→`, fluctuations approach zero amplitude and the rate
growth tends to zero. The influence of statistics of fluctu
tions on time evolution of the mean radius^R(t)& is pre-
sented in Fig. 4. It is the case of the fixed integrated inten
D0. In contrast, the case with a fixed variance^V2(t)& im-
plies a different scaling and describes a radically differ
physical situation. One can observe it for algebraic fluct
tions, cf. Figs. 4 and 5. Fluctuations withg53 can lead to a
faster growth than withg52 ~the case of the fixed intensit
D0, Fig. 4! or just the opposite, fluctuations withg53 can
lead to a slower growth than withg52 @the case of the fixed
varianceK(0), Fig. 5#.

As we mentioned, in the case when the correlation fu
tion of fluctuations is or tends to the Dirac delta function, t
asymptotics~70! is the same as for the diffusion limite
growth. Let us compare the growth rates in both theories.
this aim, we rewrite Eq.~51! in the form

^R~ t !&2.
4

p S Vc0

12Vc0
D 2

D0t, ~73!

whereV51/C is the average volume occupied by a partic
in its own crystal@1#. For the diffusion limited growth, we
get @1,9,20#

FIG. 3. The average radiuŝR(t)& of the crystal versus timet
for the growth driven by the Ornstein-Uhlenbeck fluctuations w
the exponential correlation functionK2(t) and for several values o
the correlation timetc : ~a! tc50.01,~b! tc50.1,~c! tc51, and~d!
tc510. Values of the remaining parameters are the same a
Fig. 1.
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Rd
2~ t !.2

sVc0

12Vc0
Dt, ~74!

wheres is the saturation parameter@1# andD is the diffusion
coefficient of solute in the matrix, which is assumed to be
Stokes-Einstein diffusivity of particles in solution@4,23#. The
diffusion constantD0 that appears in the correlation functio
of the velocity fluctuations can be obtained from the theo
of Brownian motion and is given by the Stokes-Einstein fo

in

FIG. 4. Plots of the mean value of the radius^R(t)& against time
t for the process with the correlation function:~a! K1(t), ~b! K2(t),
~c! K4(t) for g53, ~d! K3(t), and~e! K4(t) for g52. It is the case
of fixed integrated intensity of fluctuations. Values of the remain
parameters are the same as in Fig. 1.

FIG. 5. Time evolution of the mean radius^R(t)& for the growth
controlled by algebraically correlated fluctuations~61! for various
values of the exponentg: ~a! 0.1, ~b! 0.5, ~c! 1, ~d! 2, ~e! 3, and~f!
10. It is the case of fixed variance of fluctuations. Values of
remaining parameters areD05tc5a5R051 andR* 50.1.
1-8
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mula as well@21#. So, we can identify both diffusion coeffi
cientsD0 andD and neglect the small correction in the d
nominators. Then

^R~ t !&2.
Vc0

s
Rd

2~ t !. ~75!

Typical values of the parameters areVc051021–1022 and
s51021–1022 ~see pp. 109 and 123 in Ref.@1#!. From this
rough estimation we see that it is possible to prepare s
conditions that both rates can be of the same order.

In summary, we have proposed a mechanism of nor
and anomalous kinetics of growing crystals and investiga
a large class of growth processes controlled by the fluct
ing velocity field. A rich behavior in the growth kinetics i
shown to appear due to various statistics of the velocity fl
tuations of the fluid particles. On one hand, the grow
n,

. E
.

.

t.

k-

05140
ch

al
d
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-

process is insensitive to details of statistics of driving flu
tuations and its kinetics is universal~like for diffusion driven
growth!. On the other hand, it can be very sensitive to
specific feature of fluctuations. We have identified such
feature and conditions for normal anomalous kinetics:
low-frequency behavior of the power spectrum of drivin
fluctuations of the velocity field outside the growing cryst
It can be discussed whether the concentration fieldc( r̄ ) that
affects the growth process is diffusion in the classical se
~13! or can be modeled by a fluctuating zero-mean conv
tive field ~12!. It is difficult to unambiguously resolve this
question by looking only at the average radius of growi
crystals.
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